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ABSTRACT

A method of improving the compression of image data using Lempel-Ziv-based

coding is presented. Image data is first processed with a simple transform, such as

the Walsh Hadamard Transform, to produce subbands. The subbanded data can be

rounded to eight bits or it can be quantized for higher compression at the cost of

some reduction in the quality of the reconstructed image. The data is then run-

length coded to take advantage of the large runs of zeros produced by quantization.

Compression results are presented and contrasted with a subband compression meth-

od using quantization followed by run-length coding and Huffman coding. The Lem-

pel-Ziv-based coding in conjunction with run-length coding produces the best com-

pression results at the same reconstruction quality (compared with the Huffman-

based coding) on the image data used.

QUANTIZATION-BASED LOSSY COMPRESSION

A typical compression coding scheme for subbanded data uses run-length and

Huffman coders on quantized data [1, 2, 3]. This is also the approach used in the



JPEG method for coding of the high frequencyDCT coefficients. Statistical coders

such as these should do well with data that has large peaks in their histograms at

zero like those of the higher bands in subbanded data. The improvement in com-

pressibility from this method comes from the quantization. Quantization maps

(replaces) a range of values (in a "bin") onto one quantization value, reducing the

variability of the data by restricting the number of possible values to a small number.

The rounding of values to eight bits is actually quantization with small bin sizes.

By coarsely quantizing the data, some noise is removed along with some informa-

tion, which improves the compression. With coarser quantization, the compression

improves, but at a cost of added distortion to the reconstructed image. The key area

for coarse quantization of subbands is the region around zero. Because of the peak

of the histogram of a subband at zero, a deadband around zero will quantize more

values to zero providing longer run-lengths at a cost of somewhat more distortion.

Quantization is the key difference between Iossy and lossless coding. After quant-

ization, compression is obtained by using lossless coders, such as run-length and

Huffman coders. The loss all comes from the quantization stage.

This paper will present results from a subband compression approach to see if

good lossy compression ratios can be obtained with LZ-based coding. The LZ-based

coder is a public domain software program used on personal computers for general

purpose text file compression and archiving (LHa by "Yoshi").



QUANTIZER SELEtTTION

Variations possible in quantizers include adaptive vs. fixed, midrise vs. midtread,

symmetric vs. non-symmetric, uniform bin size vs. non-uniform, centered quantization

values vs. centroid of pdf, bin size, deadband size, and threshold value. The type of

quantizer that should be used can be deduced by looking at the histograms of sub-

bands. These histograms have a peak around zero for all but the lowest band.

Because of the basic similarities of the histograms of various images' subbands,

adaptive quantizers will not be considered here.

To prepare the data for a run-length coder, we desire a lot of zero values. Be-

cause of the large number of subband values around zero, the type of quantizer that

will provide a lot of zero values is a midtread quantizer (having a quantization bin

with zero at the center). Because of the symmetry of the histograms, a symmetric

quantizer around zero is also appropriate. The small probability of large values in

the subband would suggest a non-uniform quantizer that provides larger bin sizes at

higher values.

The quantization bin around zero is called a deadband. If a uniform quantizer

was used with a large bin size (e.g., 32), then a deadband smaller than the uniform

bin size may be necessary to minimize the difference between the reconstructed pixel

value and the original pixel value. The size of a bin or deadband will affect the

amount of distortion in the reconstructed image. The maximum error for a value in



a particular bin is half the bin size for a quantizer with a centered quantization value.

For a non-centered quantization value, the maximum possible error for any particular

quantized value is larger, although the total error for all values may be lower. This

raises the question: is it better to have fewer large errors or lots of smaller errors?

Up to a certain bin size it is obviously better to have lots of smaller errors because

those errors will not be noticeable. For example, a lot of errors of one count per

pixel in an image will not be noticeable at all. Also, a large error in a high frequen-

cy region of the image should not be as serious as one in a low frequency area

because of Human Visual System (HVS) masking, unless the high frequency is a lone

edge where artifacts can be very noticeable.

A threshold is not appropriate for subbands because of the large errors that can

be introduced. Even though a large value in a subband is very rare, the effect of

clipping it off with a threshold can be noticeable. Large values occur at light/dark

boundaries or edges, and the HVS is sensitive to noise near edges. Many images do

not have any values in the subbands greater than a certain threshold, so the tempta-

tion is there to put one in since it will not degrade the test images at all. Bins at

large values can be maintained at low cost because if they are not used their quanti-

zation values can be effectively removed with an entropy coder after the run-length

coding.

There are four quantizer designs that will be used in this research: 1) a fine
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quantizer for the DPCM coding of the low band, 2) a fine quantizer for the subbands

of high-quality reconstructions for scientific applications, 3) a coarse quantizer for the

mid-bands of an entertainment-quality reconstruction, and 4) a very coarse quantizer

for the highest band of the entertainment-quality reconstruction.

QUANTIZER DESIGN

Now that a midtread, non-uniform, symmetric quantizer has been selected, it

remains to define the bins and the quantization values of each bin. To simplify the

design somewhat, we can divide the design into three sections: 1) the deadband, 2)

the low (near-zero) bins, and 3) the high (away from zero) bins. The quantizer will

be applied to subbanded image data that has not been scaled or rounded to eight bit

values, for example, 10 bit values for a four-band Walsh-Hadamard transform. If the

subband values were rounded to eight bits before quantizing, additional distortions

would be introduced. This is because rounding to eight bits is a uniform quantiza-

tion, and a two-stage quantization will introduce additional distortion unless the bin

boundaries for the second stage exactly match a subset of the bin boundaries for the

first stage.

The deadband design is simply a matter of selecting the bin size since the quanti-

zation value will obviously be zero. A large bin size will result in longer runs of

zeros and in increased distortion in the reconstructed image. A smaller bin size will



result in fewer zero quantization values and in better reconstruction. The design

trade is to make the bin as large as possible without introducing noticeable distortion

due to quantization.

The low bins seem to fall naturally between +32 looking at the histograms of

subbands. A bin size comparable to the deadband size may be appropriate. The

quantization value for the tow bins should be somewhat closer to zero than the

center of the bin because of the curve of the histogram in the bin, at least for the

bins nearest the deadband. The optimum place would be the centroid of the histo-

gram in the bin, but that value will change from image to image. Since the histo-

gram curve flattens out as it gets away from zero, it may not be worth the trouble to

move the quantization value from the center for bins farther out.

Looking at the values beyond +32, large bins with centered quantization values

are probably sufficient because there are not many values in any particular quanti-

zation bin, so the contribution to quantization noise by having a value at the center

of the bin rather than at the centroid will be small.

For the DPCM quantizer, the number of bins is 31 with a deadband from -2 to

+ 2 (see Table I). The fine quantizer has 63 bins with a deadband of-3 to + 3. The

two coarse quantizers have a deadband of -7 to + 7, one with 7 and one with 15 bins.

The quantizers generally have smaller bins near zero compared to bins away from

zero since most subband values are expected to be near zero. The fine quantizer has
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a maximum bin sizeof nine with a quantization value at the center of the bin. Thus,

no quantized value changes from its original value by more than four counts. The

non-uniform quantizers used here are really made up of a couple of uniform quanti-

zers with larger bin sizes used for the more extreme values. The subbanded data was

processed such that the range of raw values was -255 to 255. This was accomplished

by combining the transform scaling factor for analysis and synthesis into one scaling

factor for analysis of 1/4.

RUN LENGTH CODER DESIGN

The run length coder for quantized subband values can be designed to take

advantage of the structure of the data that we expect from the quantizer. The data

should consist of many runs of zeros with some very long runs where there is little

spatial high frequency information. The number of different non-zero values will be

the same as the number of bins (less the deadband) in the quantizer, which should

be considerably less than tile number of possible values in the unquantized data.

There will be runs of non-zero values also, but these will not be as long as the zero

value runs.

To take advantage of this structure, the run length coder has been designed to

encode the subbarlds into one or two byte long codewords representing runs of zeros

or of up to sixteen different quantized values. This run length coder maintains byte-



sizedcodewordswhich simplifies handling of the data somewhat. The first bit of the

codeword determines whether it represents a run of zeros or a run of non-zero

values. Runs of zeros are coded with one or two bytes, while runs of non-zeros are

coded with one byte only. The second bit in a codeword that represents a run of

zeros indicates whether the length of the codeword is one or two bytes long. The

remaining bits are the length of the run of zeros (up to 64 for a one byte codeword,

and up to 16448 for a two byte codeword).

If the codeword represents a run of non-zero values, then four bits of the code-

word represent the bin identification and the remaining three bits represent the

length of the run (up to eight). The non-zero codewords can handle up to sixteen

quantization bins with a run length of one to eight. The codewords use the following

format:

one byte zero ¢odeword

b7 b6 b5

0 0 R

b4 b3 b2 bl b0

R R R R R

two byte zero codewords

b15 b14 b13 bi2 bll

0 1 R R R

bl0 b9 b8

R R R
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b7 b6 b5 b4

R R R R

non-zero. 16-bin codeword

b7 b6 b5 b4

1 B B B

b3 b2 bl b0

R R R R

b3 b2 bl b0

B R R R

where: B

R

indicates bin identifying bits

indicates run length bits

Because the high band quantization has 63 bins, the run length coder was modi-

fied for use with high band data to work with 64 bins. The change to increase the

number of bins reduced the length of runs that can be coded to a maximum of two.

The non-zero codewords for the 64 bin version follow the format below:

non-zero, 64-bin codeword

b7 b6 b5

1 B B

b4 b3 b2 bl b0

B B B B R
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LOWEST BAND CODING

The classic approach of Gharavi and Tabatabai [1] usesa two-dimensional

DPCM coderfor the low band anda quantizer/run-length coderfor the upper bands.

The DPCM coderusesa third-order predictor usingthree previously decodedpixels,

x -- 0.SA ÷ 0.25B ÷ 0.25C, where x is the prediction, A is the previous horizontal

pixel, B is the previous vertical pixel, and C is the previous diagonal pixel following

B. In [1], the differential signal is quantized with 31 levels, symmetric, non-uniform

quantization followed by a variable length coder.

The DPCM predictor from [1] will be used in this work, but with a different

quantizer and entropy coder. The quantizer has a deadzone of__+2 (following [2]),

and bin sizes of 5 (low bins) and 23 (bins above 13) with no upper threshold. After

quantization, an adaptive Huffman coder or LZ coder is used to provide compres-

sion. Table III gives the results for the four test images. The LZ-based coder results

are better than the adaptive Huffman coder's for three of the four images. The

image where the adaptive Huffman does better is the Baboon image where the result

is about 10% better than for LZ. Run-length coding could be used before the statis-

tical coders, but the added complexity was not justified by the small improvement in

compression.

The low band coding determines the overall compression achieved because

it is by far the hardest band to compress. The low band has nearly all of the signal
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energyof the original, and so is the biggestchallenge to code. A high quality low

band is required for good reconstruction.

The basicreconstructionquality possiblewith agivenlow bandcodingscheme

canbe estimatedby usingthe low band alone to make a reconstruction. For a four

band split, this canbe done by doubling the horizontal and vertical lines of data to

obtain areconstructedimagethe samesizeasthe original (basicallyby "zooming in").

The zoomed low band wasused to give the basereconstructedPSNR values given

in Table II. _.

If better compressionratios were desired inthe following research, then

improving the low band codingwould be the place to start. A very good fidelity low

band coderwasusedin this researchbecausethe interest here is in the codingof the

higher subbands. The samelow band coder WasUsedin both the fine and coarse

casessothat its effect on the resultswould be negligible. Better compression ratios

can be achieved by trading more distortion in the reconstructed image. A larger

deadband and coarser quantization of the DPCM data would be a place to start.

Absolute compression ratios were not the goal of this research, rather a comparison

of compression approaches was undertaken.

11



COMPRESSION RESULTS

The coding scheme described above was applied to subbanded image data

from four test images. The Walsh-Hadamard transform was used to generate four

bands for each image.

The resulting compression using the lossy technique is very good for entertain-

ment quality images such as would be used for HDTV. Entertainment quality is the

result of using the coarse quantizers. Table III contrasts the results for both fine and

coarse quantizers resulting in high quality and entertainment quality reconstructions

respectively. The compression ratio shown is for run-length followed by LZ-based

coding.

The coarse quantization provided about a 50% improvement over the fine

quantization in this case. The Baboon image proved hardest to compress because

of its noise-like high frequency information. The noise-like nature of the image

makes a lower quality reconstruction more tolerable, however. An easy improvement

in compression without noticeable affect on quality can be obtained by dropping the

high band completely, which results in a compression ratio of 3.4:1 for the fine

quantizer and 5.3:1 for the coarse quantizer. The Baboon image is a nice one to use

for testing compression because of the challenge of compressing the high frequency

content, but not so good for finding distortion which is masked by the high frequen-

cies.
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LZ and adaptive Huffman coding are compared in Table IV. Adaptive Huff-

man coding was used to avoid the overhead incurred in transmitting the Huffman

tree for every image. The comparison is between the higher bands of the test images

in a four band split. In both cases the same quantizers and run-length coders are

used, the difference is in the final coding stage. The LZ-based coder beats the

Huffman coder in 19 out of 24 cases, sometimes by a factor of over 100. In the five

cases where the Huffman coder outperformed LZ, the improvement was only around

10%. This occurred in images with lots of high frequency content (i.e., Baboon)

whicladoes not fit well with the model used by LZ coding. The surprising result is

that the LZ-based coder works very well as a statistical coder for image data and that

quantized, subbanded image data is generally well compressed using LZ. LZ-based

coding also generally provided some improvement in compression for data that had

already been Huffman coded.
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CONCLUSION

The use of a Lempel-Ziv-based coder as a statistical coder for subbanded

image data is very promising. Simple subbanding schemes can be used to prepare

image data for compression by a text coder. This allows the use of commonly avail-

able archiving programs for compression of documents that include text and image

data.
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TABLE I

QUANTIZERS

DPCM
31 bins

BIN VALUE

RANGE

-2-2 0
3-7 5

8-12 10

13-25 17
26-42 34

43-59 51

60-76 68

77-93 85

94-110 102

111-127 119

128-144 136

145-161 153
162-178 170

179-195 187

196-220 212

221-255 255

FINE

63 bins

BIN VALUE

RANGE

COARSE 1

(MID BANDS)
15 bins

BIN VALUE

RANGE

COARSE 2

(HIGH BANDS)
7 bins

BIN VALUE

RANGE

-3-3 0

4-7 5

8-12 10

13-17 15

18-22 20

23-27 25

28-31 30

32-40 36

41-49 45

50-58 54

59-67 63
68-76 72

77-85 81

86-94 90

95-103 99

104-112 108

113-121 117

122-130 126

131-139 135

140-148 144
149-157 153

158-166 162

167-175 171
176-184 180

185-193 189

194-202 198

203-211 207

212-220 216

221-229 225

230-238 234

239-247 243

248-255 252

-7-7 0

8-31 20

32-61 41

62-102 82

103-143 123

144-184 164

185-225 205

226-255 246

-7-7 0

8-63 20

64-190 127
191-255 254

Note: Quantizers are symmetric around zero. Only positive values are shown.
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TABLE II

LOW BAND DPCM COMPRESSION RESULTS

FILE SIZE (bytes)

IMAGE
LZ-Based

LENNA

Low Band

BABOON

Low Band

IO

Low Band

JUPITER

Low Band

Original
LENNA

512 x 512

Quantized

Original

65,540

65,540

51,204

100,804

Adaptive
Huffman

27,723

27,327

11,850

44,510

262,148 73,254

15,290

30,489

10,527

22,377

83,379

PSNR

(dB)

43.60

38.85

44.09

38.96

43.51

BASE

PSNR

(dB)

31.20

23.23

35.09

31.91

43.51

Notes:

1. PSNR is calculated relative to the original low band data.

2. Base PSNR is calculated relative to the full size original image using

only the low band quantized data for the reconstruction.
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TABLE III

LOSSY COMPRESSION RESULTS

RUN LENGTH AND LZ-BASED CODING OF QUANTIZED, SUBBANDED

DATA WITH DPCM CODED LOW BAND

LENNA HNE

QUANTIZATION

COARSE QUANTI-

ZATION

PSNR (dB) 37.98 33.78

Compression Ratio (C.R.) 6.9 • 1 11.1 • 1

BABOON FINE COARSE

PSNR 35.68 28.77
I I

C.R. 2.7:1 4.3 : 1

IO FINE COARSE

PSNR 40.33 36.34

C.R. 10.1 : 1 15.0 : 1

JUPITER FINE COARSE

PSNR 36.27 32.73

C.R. 6.9 : 1 12.5 : 1
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